Structures of the Perhalogenated Cyclopentasilanes $\mathrm{Si}_{5} \mathrm{Br}_{10}$ and $\mathrm{Si}_{5} \mathrm{I}_{10}$ at Normal and Low Temperatures

By Ch. Kratky
Institut für Physikalische Chemie, Universität Graz, Heinrichstrasse 28, A-8010 Graz, Austria
H. Hengge and H. Stüger
Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 16, A-8010 Graz, Austria

And A. L. Rheingold
Department of Chemistry, University of Delaware, Newark, Delaware 19711, USA

(Received 5 December 1983; accepted 6 February 1985)

Abstract

Si}_{5} \mathrm{I}_{10}: M_{r}=1409.5\); at $T=297 \mathrm{~K}$: monoclinic, $\quad P 2_{1} / n, \quad a=14.304$ (4), $\quad b=15.782$ (5), $\quad c=$ 10.966 (5) $\AA, \quad \beta=101 \cdot 30(4)^{\circ}, \quad V=2427 \AA^{3}, Z=4$, $D_{x}=3.86 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$, $\mu=128.6 \mathrm{~cm}^{-1}, F(000)=2400, R=0.069$ for 1574 reflections; at $T=96 \mathrm{~K}$: monoclinic, $P 2_{1} / n, a=$ 14.200 (5),$\quad b=15.606$ (3), $\quad c=10.870$ (2) $\AA, \quad \beta=$ $101.14(1)^{\circ}, V=2363.5 \AA^{3}, Z=4, D_{x}=3.96 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha$ radiation, $\mu=134.7 \mathrm{~cm}^{-1}, F(000)=2400, R$ $=0.042$ for 2673 reflections. $\mathrm{Si}_{6} \mathrm{Br}_{10}: M_{r}=939.5$, monoclinic, $P 2_{1} / n, \quad a=13.173$ (6), $\quad b=14.699$ (4), $c=10.279$ (3) $\AA, \quad \beta=102.85(2)^{\circ}, \quad V=1940 \AA^{3}, \quad Z$ $=4, \quad D_{x}=3.22 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Mo $K \alpha$ radiation, $\quad \mu=$ $222 \mathrm{~cm}^{-1}, F(000)=1680, T=87 \mathrm{~K}, R=0.055$ for 2202 reflections. The crystal structures are isomorphous and show Si_{5}-ring conformations intermediate between envelope and twist. Bond angles within the five-membered rings show positive correlation with the opposite dihedral angle, and bond lengths correlate negatively with the absolute value of the dihedral angle about the same bond.

Introduction. Recent accomplishments in the chemistry of cyclosilanes (Hengge, Schuster \& Peter, 1980; Hengge, 1980) have made this class of compounds available to structural investigation. The cyclic Si_{4} system shows in the crystal a strong dependence of the ring conformation on the nature of the substituents (Kratky, Schuster \& Hengge, 1983). For the cyclic Si_{5} system, electron diffraction of cyclo- $\mathrm{Si}_{5} \mathrm{I}_{10}$ (Smith, Seip, Hengge \& Bauer, 1976) has established a conformation similar to cyclopentane with pseudorotation. So far, the only crystal structure determination on a cyclo- Si_{5} compound involved the perphenylated $\mathrm{Si}_{5} \mathrm{Ph}_{10}$ (Párkányi, Sasvári, Declercq \& Germain, 1978), also yielding a highly puckered conformation.

We determined the crystal structures of the halogenides $\mathrm{Si}_{5} \mathrm{I}_{10}$ and $\mathrm{Si}_{5} \mathrm{Br}_{10}$ in view of the scarcity of structural evidence on the cyclo- Si_{5} system and in order to see whether a similar dependence between ring conformation and the nature of the substituents exists as with the Si_{4} ring.

There is yet another aspect of the two crystal structures: crystallographic evidence on five-membered rings with the full symmetry of a regular isolateral pentagon is limited to arsenomethane $\mathrm{As}_{5} \mathrm{Me}_{5}$ (Burns \& Waser, 1957) and decaphenylcyclopentasilane $\mathrm{Si}_{5} \mathrm{Ph}_{10}$ (Párkányi et al., 1978). Structural knowledge about such rings is otherwise mainly based on electron diffraction evidence (Kilpatrick, Pitzer \& Spitzer, 1947; Adams, Geise \& Bartell, 1970; Smith, Seip, Hengge \& Bauer, 1976). However, electron diffraction relies on a mathematical description of the pseudorotation, and is unable to distinguish between different conformations along the pseudorotation path. The evidence compiled from the crystal structures of symmetrically substituted five-membered rings is therefore relevant to the validity of mathematical pseudorotation models (Kilpatrick, Pitzer \& Spitzer, 1947; Cremer \& Pople, 1975; Altona, Geise \& Romers, 1968; Adams, Geise \& Bartell, 1970; Dunitz, 1972; Herzyk \& Rabczenko, 1983).

The structure of $\mathrm{Si}_{5} \mathrm{I}_{10}$ was determined independently in Graz and in Delaware. When we became aware of this duplication, the experimental work had been finished in both laboratories, and we decided to report our results together. The structure of the bromide $\mathrm{Si}_{5} \mathrm{Br}_{10}$ was determined only in Graz. Both compounds are highly reactive; at ambient conditions, crystals hydrolyze instantaneously. While the work in Graz was therefore carried out in a cold N_{2} stream, the Delaware group determined the $\mathrm{Si}_{5} \mathrm{I}_{10}$ structure at room temperature under argon.
© 1985 International Union of Crystallography

Table 1. Experimental data

	RT-Sis I_{10}	LT-Sis I_{10}	LT- $\mathrm{Si}_{5} \mathrm{Br}_{10}$
Temperature (K)	297 (2)	96 (1)*	87 (1)*
Crystal size (mm)	$0.2 \times 0.3 \times 0.3 \dagger$	0.13	$0.5 \times 0.5 \times 0.4$
Number and 2θ range $\left({ }^{\circ}\right)$ of reflections used to	25	20	15
determine lattice parameters	$22 \leq 2 \theta \leq 30$	$19 \leq 2 \theta \leq 21$	$15 \leq 2 \theta \leq 21$
Max./min. transmission factor	0.147/0.066 \dagger	0.29/0.28	0.018/0.006
Max. $\sin \theta / \lambda\left(\AA^{-1}\right)$ for intensity data collection	0.481	0.595	0.595
Range of indices	$-13 \leq h \leq 13$	$-16 \leq h \leq 16$	$-15 \leq h \leq 15$
	$0 \leq k \leq 13$	$0 \leq k \leq 18$	$-17 \leq k \leq 0$
	$0 \leq 1 \leq 15$	$-12 \leq l \leq 0$	$-12 \leq l \leq 0$
Number/frequency of standard reflections	3/97	$3 / 100$	2/100
Intensity scan technique	$\omega / 2 \theta$	ω	ω
Scan width (${ }^{\circ}$)	$2 \cdot 0+\Delta\left(a_{1}-a_{2}\right)$	1.2	1.0
Number of recorded reflections	2298	4481	4990
Number of unique reflections	2068	3974	3417
Number of significant reflections	1574	2673	2202
$R_{\text {lnt }}$	0.03	0.007	0.022
Criterion for significant reflections	$F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$	$F_{o}>4 \sigma\left(F_{0}\right)$	$F_{0}>4 \sigma\left(F_{0}\right)$
R	0.069	0.042	0.055
$w R$	0.067	0.040	0.055
Coefficient g of weighting \ddagger system	0.008	$0 \cdot 0$	0.0011
Max. Δ / σ in last refinement cycle	0.154	0.05	0.001
Max./min. height in final ΔF Fourier synthesis $\left(\mathrm{e}^{\AA^{-3}}\right.$)	1.4/-0.5	1.6/-I.4	1.4/-1.6
* Recorded temperature of N_{2} stream at nozzle of low-temperature device, about 12 mm in front of crystal. \dagger Value for first out of three crystals used for data collection - see text. \ddagger Weighting system: $w_{i}=\left[\sigma^{2}\left(F_{o .,}\right)+g F_{o, I}^{2}\right]^{-1}$.			

Experimental. Relevant data-collection conditions and structure-refinement details are given in Table 1. All three structures involved the refinement of F magnitudes; anisotropic temperature coefficients for all atoms (137 parameters); scattering factors from International Tables for X-ray Crystallography (1972).

Room-temperature cyclo- $\mathrm{Si}_{5} \mathrm{I}_{10}\left(R T-\mathrm{Si}_{5} \mathrm{I}_{10}\right)$. Nicolet $R 3$ diffractometer, crystal mounted in argon-filled 0.3 mm capillary. Decrease in standard intensities (25% in 12 h exposure) required use of three crystals. Weak reflections determined by application of a profile-fitting procedure using learned peak profiles. Data reduction (decay, Lp and absorption with empirical ψ scan, using a refined pseudo-ellipsoid model) for each crystal separately, merging of the three data sets using standard intensities. Structure solved with direct methods and ΔF Fourier syntheses, blockedcascade refinement. Computer programs: $S H E L X T L$, $P 3$ and $X P$ from the Nicolet program packages.

Low-temperature cyclo- $\mathrm{Si}_{5} \mathrm{I}_{10} \quad\left(L T-\mathrm{Si}_{5} \mathrm{I}_{10}\right)$. Locally modified Stoe four-circle diffractometer inside glove box, Nonius low-temperature attachment. Approximately spherical crystal mounted on glass fiber. Standard intensities constant within $\pm 3 \%$. Structure solved with direct methods (MULTAN, Germain, Main \& Woolfson, 1971) and ΔF Fourier syntheses, empirical extinction correction $\left[F_{\text {corr }}=F_{o}\left(1-a F_{o}^{2} / \sin \theta\right)\right.$, $a=9 \times 10^{-9}$ (Sheldrick, 1976)], spherical absorption correction ($\mu r=0.9$), exclusion of the two strongest reflections in last refinement cycles.

Low-temperature cyclo- $\mathrm{Si}_{5} \mathrm{Br}_{10}\left(L T-\mathrm{Si}_{5} \mathrm{Br}_{10}\right)$. Procedure analogous to LT- $\mathrm{Si}_{5} \mathrm{I}_{10}$. During data collection, a failure in the low-temperature device led to a several-hours-long rise of the temperature to ambient values. After re-cooling, standard intensities were down by 7 and 9%, respectively. Apart from that, they remained constant within counting statistics. Standard-intensity drop corrected by application of a scaling factor obtained from the average of the two standards. Refinement started from the LT- $\mathrm{Si}_{5} \mathrm{I}_{10}$ coordinates. Empirical extinction correction (see above, $a=$ 8×10^{-9}), spherical absorption correction ($\mu r=5.2$), exclusion of the two strongest reflections.

Computer programs used for LT-Si ${ }_{5} \mathrm{I}_{10}$ and LT$\mathrm{Si}_{5} \mathrm{Br}_{10}$: MULTAN (Germain, Main \& Woolfson, 1971), XRAY (Stewart, 1976), SHELX76 (Sheldrick, 1976), ORTEP (Johnson, 1976).*

Discussion. Table 2 lists atomic coordinates and equivalent isotropic temperature coefficients from the three refinements, Table 3 gives intramolecular bonding parameters involving the Si_{5}-ring atoms, and Fig. 1 shows a superposition of the asymmetric units of RT-Si ${ }_{5} \mathrm{I}_{10}$ and LT-Si I_{10}. The similarity in the shapes of the vibration ellipsoids of corresponding atoms argues against the presence of disorder in any of the two $\mathrm{Si}_{5} \mathrm{I}_{10}$ structures.

Bond lengths within the Si_{5} ring are intermediate between the values reported for cyclopentasilane in the gas phase $[2.342(3) \AA]$ and the crystalline $\mathrm{Si}_{5} \mathrm{Ph}_{10}$ [2.396 (8) \AA]. Deviations from the average of the five bonds [RT-Si $\mathrm{I}_{10}: 2.362$ (10); LT-Si $\mathrm{I}_{10}: 2.366$ (10); LT-Si $\mathrm{Sr}_{10}: 2.353$ (8) \AA] far exceed the corresponding e.s.d.'s. Fig. 2 shows a plot of the $\mathrm{Si}-\mathrm{Si}$ bond lengths $r_{j k}$ $v s\left[1+\cos \left(3 \tau_{i j k l}\right)\right]^{1 / 2}\left[\tau_{i j k l}\right.$ is the torsion angle about the $j k$ bond (Adams, Geise \& Bartell, 1970)], and the two quantities are evidently correlated ($r=0.83$ for RT$\mathrm{Si}_{5} \mathrm{I}_{10}, 0.97$ for LT-Si $\mathrm{I}_{5} \mathrm{I}_{10}$ and 0.87 for LT-Si Br_{10}). Unlike bond angles, bond lengths are not subject to geometrical constraints, but it is not surprising that the most completely eclipsed bonds are associated with the longest bond lengths.

The conformations of five-membered rings are frequently described in terms of a puckering amplitude $q=\left(\sum_{i=1}^{5} z_{i}^{2}\right)^{1 / 2}\left(z_{i}=\right.$ perpendicular out-of-plane deviations of atom i from a least-squares plane through the ring $)$ and a phase angle $\varphi\left[z_{i}(\right.$ calc. $)=\sqrt{ }(2 / 5) q \cos (4 \pi i /$ $5+\varphi$) (Kilpatrick, Pitzer \& Spitzer, 1947)]. Values for q and φ for the five known crystal structures of symmetrically substituted five-membered rings are

[^0]Table 2. Atomic coordinates and equivalent isotropic temperature coefficients ($\AA^{2} \times 10^{4}$) for the three crystal structure investigations $\left[(A) R T-\mathrm{Si}_{5} \mathrm{I}_{10}\right.$, (B) $L T-\mathrm{Si}_{5} \mathrm{I}_{10}$, (C) $\left.L T-\mathrm{Si}_{5} \mathrm{Br}_{10}\right]$
E.s.d.'s are in units of the last figure. Values for U_{eq} were obtained as one third of the trace of the orthogonalized $U_{i j}$ tensor. $X=\mathrm{l}$ for (A) and (B), $X=\mathrm{Br}$ for (C).

	(A)				(B)				(C)			
	x	y	z	$U_{\text {eq }}$	x	y	z	$U_{\text {eq }}$	x	y	z	$U_{\text {ea }}$
$\mathrm{Si}(1)$	436 (4)	1684 (3)	963 (5)	803 (32)	428 (3)	1669 (3)	931 (4)	123 (25)	436 (3)	1638 (3)	866 (4)	257 (23)
$\mathrm{Si}(2)$	363 (4)	3193 (3)	890 (5)	742 (33)	375 (3)	3199 (3)	889 (4)	127 (25)	375 (3)	3238 (3)	830 (4)	278 (24)
$\mathrm{Si}(3)$	198 (3)	3598 (3)	2909 (3)	783 (28)	199 (3)	3615 (3)	2908 (4)	125 (25)	215 (3)	3686 (3)	2969 (4)	276 (24)
Si(4)	-718(4)	2528 (4)	3550 (5)	802 (33)	-739 (3)	2533 (3)	3552 (4)	126 (24)	-782 (3)	2530 (3)	3618 (4)	299 (25)
$\mathrm{Si}(5)$	-219 (3)	1270 (3)	2708 (5)	805 (29)	-222 (3)	1259 (3)	2714 (4)	142 (25)	-236 (3)	1190 (3)	2736 (4)	274 (24)
$X(11)$	2067 (1)	1210 (1)	1173 (1)	940 (9)	2087 (1)	1201 (1)	1158 (1)	166 (6)	2054 (1)	1180 (1)	1128 (2)	309 (9)
$X(12)$	-515 (1)	1131 (1)	-978(1)	953 (9)	-526 (1)	1115 (1)	-1009 (1)	164 (6)	-526 (1)	1119 (1)	-1020 (2)	317 (9)
$X(21)$	-1057(1)	3623 (1)	-545 (1)	1064 (9)	-1067 (1)	3627 (1)	-583 (1)	203 (7)	-1044 (1)	3648 (1)	-610(2)	366 (10)
$X(22)$	1804 (1)	3791 (1)	382 (2)	1130 (14)	1825 (1)	3798 (1)	378 (1)	225 (7)	1785 (1)	3823 (1)	352 (2)	378 (10)
$X(31)$	1773 (1)	3457 (1)	4205 (2)	1277 (14)	1778 (1)	3472 (1)	4217 (1)	274 (7)	1765 (1)	3562 (1)	4264 (2)	441 (11)
$X(32)$	-452 (1)	5005 (1)	3013 (2)	1208 (14)	-476 (1)	5031 (1)	3009 (1)	243 (7)	-442 (2)	5053 (1)	3035 (2)	413 (11)
$X(41)$	-2368(1)	2827 (1)	2581 (1)	1005 (9)	-2397 (1)	2823 (1)	2570 (1)	184 (6)	-2419 (1)	2788 (1)	2623 (2)	349 (10)
$X(42)$	-499(1)	2453 (1)	5812 (1)	1033 (9)	-502 (1)	2441 (1)	5836 (1)	197 (6)	-550(1)	2436 (1)	5800 (2)	345 (10)
$X(51)$	1049 (1)	633 (1)	4245 (1)	1032 (9)	1060 (1)	624 (1)	4259 (1)	193 (6)	1057 (1)	603 (1)	4226 (2)	339 (10)
$X(52)$	-1571 (1)	321 (1)	2214 (1)	962 (9)	-1592 (1)	299 (1)	2208 (1)	168 (6)	-1557(1)	245 (1)	2226 (2)	321 (9)

Table 3. Geometrical parameters of the Si_{5} rings in the three structures $\left[(A) R T-\mathrm{Si}_{5} \mathrm{I}_{10}\right.$, (B) $L T-\mathrm{Si}_{5} \mathrm{I}_{10}$, (C)

$$
\left.L T-\mathrm{Si}_{5} \mathrm{Br}_{10}\right]
$$

Out-of-plane deviations refer to a least-squares plane through the Si_{5} ring.

	(A)	(B)	(C)
Bond lengths (\AA)			
$\mathrm{Si}(1)-\mathrm{Si}(2)$	2.384 (7)	$2 \cdot 389$ (6)	$2 \cdot 354$ (6)
$\mathrm{Si}(2)-\mathrm{Si}(3)$	$2 \cdot 360$ (7)	2.348 (7)	2.349 (6)
$\mathrm{Si}(3)-\mathrm{Si}(4)$	2.328 (8)	2.340 (6)	2.334 (6)
$\mathrm{Si}(4)-\mathrm{Si}(5)$	$2 \cdot 358$ (8)	2.362 (7)	$2 \cdot 346$ (6)
$\mathrm{Si}(5)-\mathrm{Si}(1)$	$2 \cdot 380$ (7)	2.390 (7)	$2 \cdot 380$ (6)
Bond angles (${ }^{\circ}$)			
$\mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{Si}(3)$	104.5 (3)	105.5 (2)	106.0 (2)
$\mathrm{Si}(2)-\mathrm{Si}(3)-\mathrm{Si}(4)$	104.6 (3)	104.4 (2)	103.7 (2)
$\mathrm{Si}(3)-\mathrm{Si}(4)-\mathrm{Si}(5)$	105.1 (3)	104.8 (2)	105.1 (2)
$\mathrm{Si}(4)-\mathrm{Si}(5)-\mathrm{Si}(1)$	106.3 (3)	$106 \cdot 6$ (2)	106.3 (2)
$\mathrm{Si}(5)-\mathrm{Si}(1)-\mathrm{Si}(2)$	106.2 (3)	105.5 (2)	105.7 (2)
Torsion angles (${ }^{\circ}$)			
$\mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{Si}(3)-\mathrm{Si}(4)$	-34.3(3)	-33.7(3)	-33.6 (3)
$\mathrm{Si}(2)-\mathrm{Si}(3)-\mathrm{Si}(4)-\mathrm{Si}(5)$	36.1 (3)	36.3 (3)	36.2 (3)
$\mathrm{Si}(3)-\mathrm{Si}(4)-\mathrm{Si}(5)-\mathrm{Si}(1)$	-23.8(3)	-25.0 (3)	-25.1 (3)
$\mathrm{Si}(4)-\mathrm{Si}(5)-\mathrm{Si}(1)-\mathrm{Si}(2)$	2.5 (3)	4.3 (3)	4.3 (3)
$\mathrm{Si}(5)-\mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{Si}(3)$	19.3 (3)	17.9 (3)	18.0 (3)
Out-of-plane deviations (\AA)			
$\mathrm{Si}(1)$	0.081 (6)	0.064 (6)	0.065 (5)
Si(2)	-0.260 (6)	-0.249 (6)	-0.249 (5)
Si(3)	0.351 (5)	0.348 (5)	0.346 (5)
$\mathrm{Si}(4)$	-0.292 (6)	-0.300 (5)	-0.300 (5)
$\mathrm{Si}(5) \quad 0.120(5) \quad 0.137(6) \quad 0.138(5)$			
		11111	

Fig. 1. ORTEP drawing (Johnson, 1976) of the crystal structures of RT-Si I_{10} and LT-Sis I_{10}.

Fig. 2. Plot of $\left[1+\cos \left(3 \tau_{i j k}\right)\right]^{1 / 2}$ vs $r_{j k}$ for the crystal structures of LT-Si I_{10} (squares), $\mathrm{LT}-\mathrm{Si}_{5} \mathrm{Br}_{10}$ (circles) and $\mathrm{RT}-\mathrm{Si}_{5} \mathrm{I}_{10}$ (crosses).
summarized in Table 4 . The value of $\varphi(\bmod 36)$ allows a classification of the ring in terms of envelope $[\varphi$ (mod $\left.36)=0^{\circ}\right]$ and twist $\left[\varphi(\bmod 36)=18^{\circ}\right]$ forms, and the data in Table 2 show the three $\mathrm{Si}_{5} X_{10}$ structures to be intermediate but closer to the envelope than the twist form. While the puckering amplitudes are the same for $\mathrm{Si}_{5} \mathrm{Br}_{10}$ and $\mathrm{Si}_{5} \mathrm{I}_{10}$, the Si_{5} ring of the perphenylated derivative $\mathrm{Si}_{5} \mathrm{Ph}_{10}$ is significantly more puckered.

In any non-planar isogonal five-membered ring, individual endocyclic bond angles have to deviate from the mean over the five angles (Table 4) for the ring to be geometrically possible (Dunitz, 1972; Dunitz \& Waser, 1972). We note a positive correlation between observed bond angles and the absolute value of the torsion angle about the opposite bond for each of the five structures. That this is an inherent property of any pseudorotating five-membered ring can be illustrated by the following line of arguments (Dunitz, 1984).

In a five-membered ring, every $1-3$ distance is also a 1-4 distance. Thus, for an equilateral pentagon with side R, the square of the distance between, say, atoms 1 and 3 can be computed from R and the bond angle $\theta\left(=\theta_{2}\right)$ as

$$
d^{2}=4 R^{2} \sin ^{2}(\theta / 2) .
$$

Table 4. Summary of five-membered-ring parameters for five crystal structures

For a definition of q and φ see text. $\langle\theta\rangle$ is the average of the five endocyclic bond angles, $r(\theta,|\tau|)$ the correlation coefficient between endocyclic bond angles and the absolute value of the opposite torsion angles.

RT-Sis I_{10}	LT-Sis I_{10}	LT- $\mathrm{Si}_{5} \mathrm{Br}_{10}$	RT-Si Ph_{10}	RT- $\mathrm{As}_{5} \mathrm{Me}_{10}$
0.545 (6)	0.544 (6)	0.543 (5)	0.634 (4)	0.865 (5)
-69.4 (9)	-66.3 (9)	-66.1 (8)	-97.2 (6)	-152.7 (4)
2.6 (9)	5.7 (9)	5.9 (8)	$10 \cdot 8$ (6)	28.0 (4)
105.3 (4)	105.4 (4)	105.4 (5)	104.5 (6)	101.8 (16)
0.80	0.83	0.94	0.88	0.75

The same quantity can also be obtained from the $1-4$ distance, using the dihedral angle $\tau\left(=\tau_{3456}\right)$ and assuming that $\theta_{4}=\theta_{5}=\bar{\theta}$, the average over all five bond angles,

$$
d^{2}=R^{2}(1-2 \cos \bar{\theta})^{2}+4 R^{2} \sin ^{2} \bar{\theta} \sin ^{2}(\tau / 2)
$$

Equating the two right sides, squaring and rearranging yields:

$$
\cos \theta=\frac{1}{2}-(1-\cos \bar{\theta})^{2}+\sin ^{2} \bar{\theta} \cos \tau
$$

With $\bar{\theta}=105.35^{\circ}$, the value observed in the three halogenide structures, we obtain

$$
\cos \theta=0.93 \cos \tau-1 \cdot 1
$$

CK thanks Professor J. D. Dunitz for a stimulating discussion. He also acknowledges support by the Österreichischer Fonds zur Förderung der wissenschaftlichen Forschung (Project Nos. 3763 and 4873), the Jubiläumsfonds der Österreichischen Nationalbank (Project No. 2214) and the Österreichische Akademie der Wissenschaften.

References

Adams, W. J., Geise, H. J. \& Bartell, L. S. (1970). J. Am. Chem. Soc. 92, 5013-5019.
Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Burns, J. \& Waser, J. (1957). J. Am. Chem. Soc. 79, 859-864.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Dunitz, J. D. (1972). Tetrahedron, 28, 5459-5467.
Dunitz, J. D. (1984). Personal communication.
Dunitz, J. D. \& Waser, J. (1972). Elem. Math. 27, 25-32.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Hengge, E. (1980). J. Organomet. Rev. 9, 261-294.
Hengge, E., Schuster, H. G. \& Peter, W. (1980). J. Organomet. Chem. 186, C45-C48.
Herzyk, P. \& Rabczenko, A. (1983). J. Chem. Soc. Perkin Trans. 2, pp. 213-217.
International Tables for X-ray Crystallography (1972). Vol. II, 3rd ed. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kilpatrick, J. E., Pitzer, K. S. \& Spitzer, R. (1947). J. Am. Chem. Soc. 69, 2483-2488.
Kratky, C., Schuster, H. G. \& Hengge, E. (1983). J. Organomet. Chem. 247, 253-257.
Párkányi, L., Sasvári, K., Declercq, J. P. \& Germain, G. (1978). Acta Cryst. B34, 3678-3682.

Sheldrick, G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge, England.
Smith, Z., Seip, H. M., Hengge, E. \& Bauer, G. (1976). Acta Chem. Scand. Ser. A, 30, 697-702.
Stewart, J. M. (1976). Editor. The XRAY76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1985). C41, 827-832

The Structure of Lazurite, Ideally $\mathrm{Na}_{6} \mathrm{Ca}_{\mathbf{2}}\left(\mathrm{Al}_{6} \mathrm{Si}_{6} \mathbf{O}_{24}\right) \mathbf{S}_{\mathbf{2}}$, a Member of the Sodalite Group

By I. Hassan

Earth and Planetary Sciences, Erindale Campus, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
R. C. Peterson

Department of Geological Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
and H. D. Grundy
Department of Geology, McMaster University, Hamilton, Ontario, Canada L8S 4M1
(Received 8 May 1984; accepted 18 February 1985)

Abstract

Cubic, $P \overline{4} 3 n, \quad Z=1$, two different specimens: (1) Afghanistan, $\mathrm{Na}_{8.56}\left(\mathrm{Al}_{6} \mathrm{Si}_{6} \mathrm{O}_{24}\right)$ $\left(\mathrm{SO}_{4}\right)_{1.56} \mathrm{~S}_{0.44}, \quad M_{r}=1075 \cdot 14, \quad a=9.105$ (2) $\AA, \quad V=$ $754.8 \AA^{3}, \quad D_{x}=2.39 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ graphite-monochromatized Mo $K \alpha$ radiation, $\lambda K \alpha=0.71069 \AA$,

[^0]: * Lists of structure factors, anisotropic thermal parameters, bond lengths and bond angles for the three structures have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42048 (51 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

